REAL-TIME MINING

MOVING TOWARDS CONTINUOUS PROCESS MANAGEMENT IN MINERAL RESOURCE EXTRACTION

FUTURE MINING CONFERENCE
SYDNEY, 5TH OF NOVEMBER 2015

JÖRG BENNDORF, DELFT UNIVERSITY OF TECHNOLOGY
ON BEHALF OF THE REAL-TIME MINING CONSORTIUM

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989
BACKGROUND

Potential of critical raw materials in Europe classified by deposit sizes (PROMINE)

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989
BACKGROUND

The main barriers to overcome for the successful economic exploitation:

- **effective grade control**, which will maximize resource potential along the whole value chain
- **minimization of handling zero-value material** introduced by dilution, thus reducing unnecessary expenditure of energy and financial resources and
- **management and control of the geological uncertainty** due to limited information available.
Main Source of Risk: Geological Uncertainty

Limited Information 1:10.000.000

Complex Geology

Tight product specifications
THE TRADITIONAL APPROACH

SILO 1
- Exploration and Data Collection

SILO 2
- Resource Modelling

SILO 3
- Mine Design
- Equipment Selection
- Reserve Estimation

SILO 4
- Production Scheduling and Operation

SILO 5
- Processing and Sale

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989
NEW INFORMATION POTENTIAL

Increasing Availability of Sensor Based Online Data:

• Material characterization (geo-chemical, textural and physical properties)
• Equipment performance, upstream and downstream (e.g. efficiency, down-time)
• Equipment location and material tracking (e.g. GPS, UPS)
THE REAL-TIME MINING APPROACH

Discontinuous and Intermittent Process Monitoring and Decision Making

Near-Continuous Process Control and Optimization

INNOVATION

Mine Planning and Prediction
Real-Time Resource/Reserve Model Update
Online Sensor-based Measurements

Prediction vs. Measurements

Operation of Mine Plan

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989
Overall objective: to develop an innovative technical solution for resource-efficient and optimal high precision/selective mining in geologically complex settings using online data.

Hypothesis: recovery can be significantly increased by changing mineral resource management from a ‘batch-type’ to a near-continuous model-based controlled activity
REAL-TIME MINING BUILDING BLOCKS

BB 1: Sustainability and Industrial Viability Indicators

- **Mining Machine**
 - **BB 2: Underground Positioning**
 - Positioning and inertial navigation
 - Infrastructure
 - **BB3: Sensors for Material Characterization**
 - Sensors-combinations
 - Link to ore properties (geochem, texture, mineralogical physical)
 - Representative sampling strategies
 - **BB4: Sensors for Machine Performance**
 - Machine performance measures such as cutting energy and link to material properties

BB 5: Data Integration, Management and Visualization

Exploration and Mine Planning

- **BB 6: Sequential Resource Model Update – Real Time**
 - Real-Time updating integration of exploration data and sensor information (material + machine performance sensors)

- **BB 7: Integrated Long- and Short-Term Optimization**
 - Rapid optimization of short-term sequencing and production control
 - Integrated optimization of short- and long-term planning

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989.
EXTRACTION METHODS RTM
CYCLIC EXTRACTION

Drill Hole
Core Sample
Ore zone
Muck-pile
LHD
Ore-passage
Ore Transfer
Crusher
BIN

Control decision points
Selective Loading
Scheduling

Sensors for material characterization
Sensors for machine performance
Sensors for geo-referencing (positioning and material tracking)

Selective Loading
Scheduling

Sensors for material characterization

Bin A
Bin B
Bin C

Dispatching

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989
REAL-TIME MINING
REAL-TIME DATA

(Lead: RWTH Aachen)

Lead: TU Delft

Lead: SonicSampDrill

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989
TEST CASE 1

“Reiche Zeche” Research Mine
Freiberg, Germany

Source: Description „Test Site Mine ‚Reiche Zeche‘, Freiberg, Saxony, Germany“ provided by TU Bergakademie Freiberg

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989
TEST CASE 2

“Neves Corvo” Copper Mine
Portugal (Massive sulphide ore and associated stockwork zone)

Source: lundin mining

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989
CASE STUDY UPDATING

Grade Control (GC) Model
1. Reconcile – Extracted Blocks
2. Update – Scheduled Blocks

Extraction Performance
1. Improve production forecasts
2. Optimize control decisions (proact)
CASE STUDY UPDATING

Material Tracking/ Material Flow Simulation in the Mine

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989
CASE STUDY UPDATING

Mean Field

SMU scale

Simulations
CASE STUDY UPDATING

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989
CASE STUDY OPTIMIZATION

Forecast of process KPI's for a given extraction schedule

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989
CASE STUDY OPTIMIZATION

Simulation based optimization of extraction schedule to improve extraction performance
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989.

ADVANCE WITHIN RTM

Innovation Chain Real-Time Mining

- Integrated real-time closed-loop framework for optimizing extraction in highly selective and geological complex settings
- Sensor combinations for rapid raw material characterization
- Sensors for machine performance (rock cutting)
- System integration and demonstrated real-time framework for extraction in a:
 - Rock-cutting application
 - Sonic drill application
 - Rotary drill application

- Rapid updating of mineral resource/reserve model
- Real-Time optimization of long- and short-term decisions
- Underground positioning system – TRL6
- Exploitation plan for prototype and market entry preparation

TRL 1 basic principles observed
TRL 2 technology concept formulated
TRL 3 experimental proof of concept
TRL 4 technology validated in lab
TRL 5 technology validated in relevant environment
TRL 6 technology demonstrated in relevant environment
TRL 7 system prototype demonstration in operational environment
TRL 8 system complete and qualified
TRL 9 actual system proven in operational environment
THREE TAKEAWAYS

1. Real-Time Mining is an exciting European Union funded H2020 project and integrates multiple disciplines.

2. Making best use of online production information can lead to a shift in paradigm from a batch-type to a continuous process monitoring and control and can create significant value.

3. Real-Time Mining will demonstrate this hypothesis in full industrial scale case studies (TRL 6/7).
Thank you for your attention and

Glückauf

www.realtime-mining.eu